Robust inference with GMM estimators
نویسندگان
چکیده
The local robustness properties of generalized method of moments (GMM) estimators and of a broad class of GMM based tests are investigated in a uni"ed framework. GMM statistics are shown to have bounded in#uence if and only if the function de"ning the orthogonality restrictions imposed on the underlying model is bounded. Since in many applications this function is unbounded, it is useful to have procedures that modify the starting orthogonality conditions in order to obtain a robust version of a GMM estimator or test. We show how this can be obtained when a reference model for the data distribution can be assumed. We develop a #exible algorithm for constructing a robust GMM (RGMM) estimator leading to stable GMM test statistics. The amount of robustness can be controlled by an appropriate tuning constant. We relate by an explicit formula the choice of this constant to the maximal admissible bias on the level or (and) the power of a GMM test and the amount of contamination that one can reasonably assume given some information on the data. Finally, we illustrate the RGMM methodology with some simulations of an application to RGMM testing for conditional heteroscedasticity in a simple linear autoregressive model. In this example we "nd a signi"cant instability of the size and the power of a classical GMM testing procedure under a non-normal conditional error distribution. On the other side, the RGMM testing procedures can control the size and the power of the test under non-standard conditions while maintaining a satisfactory power under an approximatively normal conditional error distribution. ( 2001 Elsevier Science S.A. All rights reserved. *Corresponding author. Tel.: #41-91-912-4723. E-mail addresses: [email protected] (E. Ronchetti), [email protected] (F. Trojani). 0304-4076/01/$ see front matter ( 2001 Elsevier Science S.A. All rights reserved. PII: S 0 3 0 4 4 0 7 6 ( 0 0 ) 0 0 0 7 3 7
منابع مشابه
Asymptotic variance approximations for invariant estimators in uncertain asset-pricing models
This paper derives explicit expressions for the asymptotic variances of the maximum likelihood and continuously updated GMM estimators under potentially misspecified models. The proposed misspecification-robust variance estimators allow the researcher to conduct valid inference on the model parameters even when the model is rejected by the data. Although the results for the maximum likelihood e...
متن کاملGmm Estimation and Uniform Subvector Inference with Possible Identification Failure By
This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CSs) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The...
متن کاملGmm Estimation and Uniform Subvector Inference with Possible Identification Failure
This paper determines the properties of standard generalized method of moments (GMM) estimators, tests, and confidence sets (CSs) in moment condition models in which some parameters are unidentified or weakly identified in part of the parameter space. The asymptotic distributions of GMM estimators are established under a full range of drifting sequences of true parameters and distributions. The...
متن کاملRobust small sample accurate inference in moment condition models
Procedures based on the Generalized Method of Moments (GMM) (Hansen, 1982) are basic tools in modern econometrics. In most cases, the theory available for making inference with these procedures is based on first order asymptotic theory. It is well-known that the (first order) asymptotic distribution does not provide accurate p-values and confidence intervals in moderate to small samples. Moreov...
متن کاملRobust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models∗
This paper extends the transformed maximum likelihood approach for estimation of dynamic panel data models by Hsiao, Pesaran, and Tahmiscioglu (2002) to the case where the errors are crosssectionally heteroskedastic. This extension is not trivial due to the incidental parameters problem that arises, and its implications for estimation and inference. We approach the problem by working with a mis...
متن کامل